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Algebraic relaxation of an order parameter in randomly coupled limit-cycle oscillators

Hiroaki Daido
Department of Physics, Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan

~Received 28 December 1998!

In their recent paper@Phys. Rev. E58, 1789~1998!#, Stiller and Radons~SR! study, following our earlier
work @Phys. Rev. Lett.68, 1073~1992!#, the behavior of globally and randomly coupled phase oscillators with
distributed intrinsic frequencies. They claim that their simulation results do not confirm the power-law behav-
ior of an order parameter found numerically by the author, attributing its cause to the poor precision of the
author’s integration scheme. Here demonstrated is that the power law survives even for a scheme better than
SR’s, provided that finite-size effects are properly taken into account, as was done in our previous work.

PACS number~s!: 05.45.2a, 87.10.1e, 02.50.2r, 05.40.2a
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The behavior of large populations of coupled nonline
oscillators is now one of the central subjects in nonlin
dynamics@1–3#. Although it is usually studied for the case o
nonrandom interactions, the architecture of coupling in a
kind of real coupled-oscillator systems should involve mo
or less quenched disorder. If such disorder is weak eno
then it will not cause any significant change in the system
behavior. However, one may expect the emergence of qu
tatively new features when randomness in coupling is
decoratively feeble. For example, many biological and phy
ological oscillator systems, including the brain, might be e
amples of such a case@1,4#. It is therefore an important an
interesting subject to examine the behavior of random
coupled oscillators. From this point of view, the auth
started investigations into pools of randomly coupled lim
cycle oscillators more than a decade ago@5# and later pro-
posed a model of ‘‘oscillator glass’’@6#,

u̇ j5V j1~2p!21(
i 51

N

Ji j sin~u i2u j ! ~ j 51, . . . ,N!,

~1!

where the overdot means the time derivative;u j is the phase
of oscillator j, V j being its intrinsic frequency, which is as
sumed to be distributed within the population with dens
f (V), and Ji j 5Jji are independent random coefficien
obeying the normal distributiong(Ji j )5(2pJ2/N)21/2exp
(2NJij

2/2J2); J is the control parameter@7#. This model is
analogous to the Sherrington-Kirkpatrick model of sp
glasses@8#, characterized by not only randomness but a
strong frustration. Of several results in Ref.@6#, what is taken
up here is the behavior ofZ(t) defined by

Z~ t !5
1

N (
j 51

N

exp$ iu j~ t !% ~ i[A21!,

which is a standard order parameter in the study of coup
limit-cycle oscillators@2,3#. In Ref. @6#, the intrinsic frequen-
cies are set so as to obeyf (V)5(2p)21/2exp(2V2/2) as an
example~see below for details! @9#. What is reported there
@see in particular Fig. 5~a! therein@10## is that the decay of
u@Z(t)#u for t large changes from exponential to algebraic

u@Z~ t !#u;t2a ~2!
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when J exceedsJc , a threshold value, where@Z(t)# stands
for an average ofZ(t) over a number of different realization
of Ji j , which average will hereafter be referred to as
‘‘sample-average’’ following Refs.@6,11# and the number of
realizations used will be denoted byNs @12#. In that work,
numerical integration was performed with the Euler sche
of time stepDt52p30.01 for N5500,1000,2000 andNs
510. For the larger values ofN, Jc is near 6, and the expo
nenta depends onJ @see Fig. 5~b! of Ref. @6##.

Recently, however, Stiller and Radons~SR! @13# have re-
ported that their results are essentially different: they fi
exponential decay forJ,24.5 and algebraic decay only fo
J524.5, leaving the regionJ.24.5 unsettled because of th
complex behavior of the order parameter therein. Their in
gration scheme is the Heun method withDt52p31023,
which is expected to have better accuracy than the auth
@6#. From this fact, they suggest that the slow relaxat
found by the author is not correct, being a discretizat
effect due to the low order integration scheme. The m
purpose of this paper is to point out the following:~1! An
alternative computation based on a higher-order met
which is expected to be more accurate than SR’s supports
algebraic decay;~2! what is crucial is finite-size effects
which Stiller and Radons do not seem to take into accou

Although not discussed here, there are other and re
studies of randomly coupled oscillators~see, e.g., papers in
@14#!.

Our comments on the relevant part of the SR paper@13#
are as follows.

~1! As a demonstration of the discretization effect, th
compute the Lyapunov exponent with both their method a
ours in Ref.@6# to compare the results@Fig. 4 of Ref.@13##.
However, this does not make sense because the proble
the relaxation ofZ and NOT the behavior of the Lyapuno
exponent. The integration error caused by a low-or
scheme may accumulate to have a serious influence on
final result when the integration is made over a long tim
interval, just as in the calculation of the Lyapunov expone
but the situation can be different with calculations over
relatively short time interval. In the present case, the ti
span concerned is order of 2p31. For such a short period, i
is possible that even low order schemes produce sufficie
accurate results. Our new calculations described below
show that this is indeed the case.
2145 ©2000 The American Physical Society
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~2! The most crucial point is the check of finite-size e
fects. The paper by SR does not mention anything on
important point, reporting only the result forN51000. Any
finite-size system cannot escape from finite-size effects,
of which is sample-dependence: the smallerN, the larger this
dependence. By this reason, sample-averaging as menti
above is indispensable to obtain a meaningful result foN
finite. WhenN is not large enough, it is not surprising even
a result for one particular sample largely deviates from
infinite-size behavior. Another finite-size effect manifests
self in the long time behavior of the order parameter, i.e
does not vanish even in the limitt→`, but keeps fluctuating
with a small amplitude of orderN21/2 @15#. This means that
the true infinite-size behavior can only be expected to app
while the value of the order parameter stays well above
level below which such a finite-size behavior starts to app
In view of these, in the author’s previous work, three valu
of N, as already recalled, were taken to confirm that incre
ing N resulted in a longer power-law range oft.

In order to verify that the algebraic decay of the ord
parameter is not a false one created by low accuracy of
integration scheme, new calculations have been done foN
51000 and 4000 using a Runge-Kutta-Gill routine withDt
50.01. The Heun method adopted by SR is of second o
while the present is of fourth order. The latter forDt50.01

FIG. 1. Behavior of the sample-averaged order parameter
J510: ~a! N51000, Ns550; ~b! N54000, Ns552.
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should therefore have better accuracy than the former
Dt52p31023, which is SR’s choice. As in the work o
Ref. @6#, intrinsic frequencies have been prepared as follo

V (N/2)1k5~xk211xk!/2, V (N/2)2k1152~xk211xk!/2
~3!

for k51, . . . ,N/2, wherexk are recursively defined by

xk115xk1N21/ f ~xk!

starting fromx050. The symmetric coupling coefficientsJi j
have been produced by a Gaussian random number ge
tor. Note that by these settings, the sum( j 51

N u j is exactly
conserved as in the infinite-size system. The initial condit
is u j50 for all j. Since very expensive~in particular forN
54000), the computation has been limited toJ510 and 15
here, which values are above the thresholdJc reported pre-
viously by the author~thus lying in the power law region!
and well below SR’s threshold~thus in the exponential re
gion according to SR!. Figures 1 and 2 show double loga
rithmic plots of u@Z(t)#u vs t for J510 and 15, respectively
IncreasingNs tends to make the power law fit better. T
check the pure effect of increasingN, however, the compari-
son betweenN51000 and 4000 is made for exactly or near
the sameNs . Let us first check the results forN51000 dis-

or FIG. 2. Behavior of the sample-averaged order parameter
J515: ~a! N51000, Ns550; ~b! N54000, Ns550.
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played in~a! of each figure, where the fit line for the data
~b! is copied to make comparison to~b! easier. The common
feature is that except for an initial transient period, an al
braic decay begins to last until it is influenced and then
terrupted by irregular oscillations, one of the finite-size
fects mentioned above. It is also seen that the algeb
decay begins earlier forJ larger. Let us then go on to~b! of
each figure where the result forN54000 is displayed. As is
expected, for both values ofJ, the time interval in which an
excellent power-law fit is possible is found to substantia
expand towards the larget side and hence the appearance
the irregular oscillations to be delayed accordingly. This f
is clear evidence that the deviation from the power law fot
large is nothing but a finite-size effect. As a further che
the values of exponenta for J510 and 15 were determine
by a least squares fit to compare to those due to the prev
method. ForJ510, the work of Ref.@6# (N51000) yielded
a52.27760.004 (1.76<t<4.27), while the present work
(N54000) led toa52.22060.007 (1.5<t<6). ForJ515,
no data are available from the previous work; a new com
tation with the same method for the sameN andNs as in Ref.
@6# resulted ina51.59960.005 (1.13<t<3.52), while its
counterpart here(N54000) is a51.50660.006 (1.0<t
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<9.5). These results demonstrate that the computational
ting adopted in Ref.@6# actually worked sufficiently well.

To conclude, the algebraic decay of the order param
reported previously has been reconfirmed by adopting
more accurate algorithm for integration and by making b
the system size and the number of samples much larger.
result does not agree with Stiller and Radons’ claim that
decay of the order parameter remains exponential untJ
reaches 24.5 and their other claim that the nonexponen
relaxation reported in Ref.@6# is a result of poor accuracy o
the integration scheme adopted there. Although only two v
ues of J have been tested here, we believe that the sa
conclusion holds for other values ofJ at least in the range
explored in Ref.@6# (J<20). The key point is to take finite
size effects into account; similar comments as given ab
might be relevant to another part of Stiller and Radons’ wo
@13#. Admittedly, any numerical approach has its own limi
analytical studies would be indispensable to establish
slow relaxation~2! over a range of the parameter.

Numerical calculations of this work have been perform
with Fujitsu VPP 700/56 of The Computer Center, Kyus
University.
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