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Algebraic relaxation of an order parameter in randomly coupled limit-cycle oscillators
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In their recent papelPhys. Rev. B58, 1789(1998], Stiller and Radon$SR) study, following our earlier
work [Phys. Rev. Lett68, 1073(1992], the behavior of globally and randomly coupled phase oscillators with
distributed intrinsic frequencies. They claim that their simulation results do not confirm the power-law behav-
ior of an order parameter found numerically by the author, attributing its cause to the poor precision of the
author’s integration scheme. Here demonstrated is that the power law survives even for a scheme better than
SR’s, provided that finite-size effects are properly taken into account, as was done in our previous work.

PACS numbegps): 05.45—a, 87.10+e, 02.50--r, 05.40—a

The behavior of large populations of coupled nonlinearwhenJ exceeds]., a threshold value, whef&Z(t)] stands
oscillators is now one of the central subjects in nonlinearfor an average oZ(t) over a number of different realizations
dynamicq 1-3]. Although it is usually studied for the case of of Jij, which average will hereafter be referred to as a
nonrandom interactions, the architecture of coupling in any‘sample-average” following Ref4.6,11] and the number of
kind of real coupled-oscillator systems should involve morerealizations used will be denoted g [12]. In that work,
or less quenched disorder. If such disorder is weak enouglmumerical integration was performed with the Euler scheme
then it will not cause any significant change in the system’sf time stepAt=27x0.01 for N=500,1000,2000 and,
behavior. However, one may expect the emergence of quali=10. For the larger values ™, J. is near 6, and the expo-
tatively new features when randomness in coupling is nohenta depends or [see Fig. %) of Ref.[6]].
decoratively feeble. For example, many biological and physi- Recently, however, Stiller and Radof8R) [13] have re-
ological oscillator systems, including the brain, might be ex-ported that their results are essentially different: they find
amples of such a casé,4]. It is therefore an important and exponential decay fod<24.5 and algebraic decay only for
interesting subject to examine the behavior of randomlyj=24 5, leaving the regiod>24.5 unsettled because of the
coupled oscillators. From this point of view, the authorcomplex behavior of the order parameter therein. Their inte-
started investigations into pools of randomly coupled limit-gration scheme is the Heun method with=27x10"3,
cycle oscillators more than a decade a§band later pro-  which is expected to have better accuracy than the author’s

posed a model of “oscillator glass[6], [6]. From this fact, they suggest that the slow relaxation

N found by the author is not correct, being a discretization

S — 0. -1 i A A, C_ effect due to the low order integration scheme. The main
0j=Q;+(2m) 21 Jipsini=0;) - (1=1,...N), purpose of this paper is to point out the following) An

(1)  alternative computation based on a higher-order method
which is expected to be more accurate than SR’s supports the

where the overdot means the time derivatiggis the phase algebraic decayj2) what is crucial is finite-size effects,
of oscillatorj, Q; being its intrinsic frequency, which is as- which Stiller and Radons do not seem to take into account.
sumed to be distributed within the population with density  Although not discussed here, there are other and recent
f(Q), and J;=J; are independent random coefficients studies of randomly coupled oscillatofsee, e.g., papers in
obeying the normal distributioy(J;;) = (2mJ%/N) "2exp  [14]).
(—N\ijZJZ); J is the control parametdf7]. This model is Our comments on the relevant part of the SR pdpsit
analogous to the Sherrington-Kirkpatrick model of spinare as follows.
glasseq8], characterized by not only randomness but also (1) As a demonstration of the discretization effect, they
strong frustration. Of several results in Rd], what is taken  compute the Lyapunov exponent with both their method and

up here is the behavior &(t) defined by ours in Ref.[6] to compare the resul{$ig. 4 of Ref.[13]].
N However, this does not make sense because the problem is
1 ) ) the relaxation oZ and NOT the behavior of the Lyapunov
Z0=y 12::1 expli o))} (i=\-1), exponent. The integration error caused by a low-order

scheme may accumulate to have a serious influence on the
which is a standard order parameter in the study of couplefinal result when the integration is made over a long time
limit-cycle oscillatorg[2,3]. In Ref.[6], the intrinsic frequen-  interval, just as in the calculation of the Lyapunov exponent,
cies are set so as to ob&f)) = (27)  Y2exp(—Q%2) as an but the situation can be different with calculations over a
example(see below for detai)s[9]. What is reported there relatively short time interval. In the present case, the time
[see in particular Fig. ®) therein[10]] is that the decay of Span concerned is order ot 1. For such a short period, it
[[Z(t)]] for t large changes from exponential to algebraic ags possible that even low order schemes produce sufficiently

accurate results. Our new calculations described below will

[Z(H)]|~t~“ (2)  show that this is indeed the case.
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FIG. 1. Behavior of the sample-averaged order parameter for ' 'G- 2. Behavior of the sample-averaged order parameter for
J=10: (a) N=1000, N,=50; (b) N=4000, N,=52. J=15: (&) N=1000, Ns=50; (b) N=4000, Ns=50.

) o L should therefore have better accuracy than the former for
(2) The most crucial point is the check of finite-size ef- At=27x10"3, which is SR’s choice. As in the work of

fects. The paper by SR does not mention anything on thiget (6], intrinsic frequencies have been prepared as follows:
important point, reporting only the result fof=1000. Any

finite-size system cannot escape from finite-size effects, one Qv+ k= X1 X012, Q- 1= — (Xem 1+ X,)/2

of which is sample-dependence: the smalethe larger this ©)
dependence. By this reason, sample-averaging as mentioned

above is indispensable to obtain a meaningful resultNor for k=1, ... N/2, wherex, are recursively defined by
finite. WhenN is not large enough, it is not surprising even if

a result for one particular sample largely deviates from the Xier 1= X+ NTHE (x0)

infinite-size behavior. Another finite-size effect manifests it-
self in the long time behavior of the order parameter, i.e., itstarting fromx,=0. The symmetric coupling coefficiends
does not vanish even in the lintit-o, but keeps fluctuating have been produced by a Gaussian random number genera-
with a small amplitude of ordeX ~*2[15]. This means that tor. Note that by these settings, the siifl, ¢; is exactly
the true infinite-size behavior can only be expected to appearonserved as in the infinite-size system. The initial condition
while the value of the order parameter stays well above thés 6;=0 for all j. Since very expensivén particular forN
level below which such a finite-size behavior starts to appear=4000), the computation has been limitedJte 10 and 15
In view of these, in the author’s previous work, three valueshere, which values are above the threshideported pre-
of N, as already recalled, were taken to confirm that increasviously by the authorthus lying in the power law region
ing N resulted in a longer power-law range tof and well below SR’s threshol@hus in the exponential re-
In order to verify that the algebraic decay of the ordergion according to SR Figures 1 and 2 show double loga-
parameter is not a false one created by low accuracy of thathmic plots of|[Z(t)]| vst for J=10 and 15, respectively.
integration scheme, new calculations have been don&ifor IncreasingNg tends to make the power law fit better. To
=1000 and 4000 using a Runge-Kutta-Gill routine wikh  check the pure effect of increasityg however, the compari-
=0.01. The Heun method adopted by SR is of second ordeson betweeiN= 1000 and 4000 is made for exactly or nearly
while the present is of fourth order. The latter fdt=0.01  the sameN,. Let us first check the results fof=1000 dis-
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played in(a) of each figure, where the fit line for the data in <9.5). These results demonstrate that the computational set-
(b) is copied to make comparison ¢b) easier. The common ting adopted in Ref[6] actually worked sufficiently well.
feature is that except for an initial transient period, an alge- To conclude, the algebraic decay of the order parameter
braic decay begins to last until it is influenced and then in-reported previously has been reconfirmed by adopting a
terrupted by irregular oscillations, one of the finite-size ef-more accurate algorithm for integration and by making both
fects mentioned above. It is also seen that the algebraihe system size and the number of samples much larger. This
decay begins earlier faf larger. Let us then go on ) of  resylt does not agree with Stiller and Radons’ claim that the
each figure where the result for=4000 is displayed. Asis  gecay of the order parameter remains exponential uhtil
expected, for both values df the time interval in which an oaches 24.5 and their other claim that the nonexponential
excellent power-law fit is possmle is found to substantially .o |axation reported in Ref6] is a result of poor accuracy of
expand towards the largeside and hence the appearance ofihe integration scheme adopted there. Although only two val-
the irregular oscillations to be delayed accordingly. This fact o5 of J have been tested here, we believe that the same
is clear evidence that the deviation from the power lawtfor ., 1usion holds for other values dfat least in the range
large is nothing but a finite-size effect. As a further C,heCk'eprored in Ref[6] (J<20). The key point is to take finite-
the values of exponent for J=10 and 15 were determined ;¢ effects into account; similar comments as given above
by a least squares fit to compare to those due to the previoygignt he relevant to another part of Stiller and Radons’ work
method. ForJ=10, the work of Ref[6] (N=1000) yielded  [13] admittedly, any numerical approach has its own limits:
a=2.277-0.004 (1.76<t<4.27), while the present work anaivtical studies would be indispensable to establish the

(N=4000) led toa=2.220+0.007 (1.5<t<6). ForJ=15,  glow relaxation(2) over a range of the parameter.
no data are available from the previous work; a new compu-

tation with the same method for the sad@ndNg as in Ref. Numerical calculations of this work have been performed
[6] resulted inae=1.599+0.005 (1.13<t<3.52), while its  with Fujitsu VPP 700/56 of The Computer Center, Kyushu
counterpart her&(=4000) is «=1.506-0.006 (1.6t University.
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